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We present new truly multidimensional schemes of higher order within the frame-
work of finite volume evolution Galerkin (FVEG) methods for systems of nonlinear
hyperbolic conservation laws. These methods couple a finite volume formulation
with approximate evolution operators. The latter are constructed using the bichar-
acteristics of the multidimensional hyperbolic system, such that all of the infinitely
many directions of wave propagation are taken into account. Following our previous
results for the wave equation system, we derive approximate evolution operators for
the linearized Euler equations. The integrals along the Mach cone and along the cell
interfaces are evaluated exactly, as well as by means of numerical quadratures. The
influence of these numerical quadratures will be discussed. Second-order resolution
is obtained using a conservative piecewise bilinear recovery and the midpoint rule
approximation for time integration. We prove error estimates for the finite volume
evolution Galerkin scheme for linear systems with constant coefficients. Several
numerical experiments for the nonlinear. Euler equations, which confirm the accu-
racy and good multidimensional behavior of the FVEG schemes, are presented as
well. c© 2002 Elsevier Science (USA)

Key Words: genuinely multidimensional schemes; hyperbolic systems; wave equa-
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1. INTRODUCTION

In recent years the most commonly used methods for hyperbolic problems were finite
volume methods which were based on a quasidimensional splitting using one-dimensional
Riemann solvers. These were applied in directions determined by the grid instead of the flow.
This can yield spurious local wave structures. Actually, it turned out that in certain cases, e.g.,
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when waves are propagating in directions that are oblique with respect to a rectangular mesh,
this approach leads to structural deficiencies and large errors in the solution. Therefore, our
emphasis has been placed on developing genuinely multidimensional methods.

The first criticism of using one-dimensional Riemann solvers was given by Roe [30].
Further description of several failings of one-dimensional Riemann solvers applied to mul-
tidimensional Euler equations can be found in Quirk [29]. In particular such phenomena as
the “odd-even-decoupling” and “carbuncle” problem are reported therein.

In the 1990s Deconinck et al. [7] presented the fluctuation splitting schemes. The propa-
gation information is decomposed into a discrete number of simple waves. These are then
distributed in flow direction to the cell vertices. In 1997 Le Veque presented the wave prop-
agation algorithm for multidimensional systems of conservation laws [13]. The scheme
still works with a one-dimensional Riemann solver; however, it not only approximates the
fluxes in x and y directions normal to cell interfaces, it also considers the tangential fluxes.
During the same time Fey developed the method of transport (MoT) for the Euler equations
[9]. Fey’s method is based on decomposing the Euler equations into a finite number of
advection equations and solving each of them separately using a multidimensional scheme.
The MoT suffers from an inconsistency at sonic points when used with piecewise constant
recovery. Recently, Noelle introduced in [27] a simplified version of the MoT scheme us-
ing the so-called interface-centered evolution. Noelle’s method is consistent at all points,
including sonic points.

Other multidimensional approaches include Colella’s corner transport upwind (CTU) [6],
the weighted-average-flux (WAF) scheme of Billet and Toro [2], and the method of Brio et al.
[3]. The latter is based on the use of the so-called multistate linear Riemann solver, which
corrects, in a multidimensional manner, contributions from corners of the computational
cells. The explicit solution of the linear multistate Riemann problem is based on the use
of the Kirchhoff formulae for linear second-order wave equations (see also [10] for related
work).

In our work we use, similarly to Brio et al., linear solvers to take into account the
multidimensional nature of hyperbolic systems. The main advantages of this approach are
improved resolution properties and the directional unsplit nature of the scheme. On the
other hand, we work with a general theory of bicharacteristics for linear hyperbolic systems
of first order in order to obtain the so-called approximate evolution operators. Thus, our
approach is more general and can be extended to systems that are not easily reduced to the
wave equation (see Li et al. [14]).

The basic idea of the evolution Galerkin schemes (EG), introduced by Morton and co-
workers (see, e.g., [15, 25]), is the following. Transport quantities are shifted along char-
acteristics and then projected onto a finite element space. Thus, these methods connect
the theory of characteristics for hyperbolic problems with finite element ideas. For scalar
equations a complete theory and error analysis are available. An application to the one-
dimensional Euler equations was described by Childs [5].

It was Ostkamp [28] who first generalized EG schemes to multidimensional systems. In
[17] we improved the stability as well as accuracy of Ostkamp’s original finite difference
scheme. In [23] we derived new second-order finite difference EG schemes. Higher order
finite volume evolution Galerkin (FVEG) schemes were studied for linear wave equation
systems in [18, 19]. The aim of this contribution is to derive and analyze new multidimen-
sional high-resolution FVEG methods for systems of nonlinear hyperbolic conservation
laws (see also [21] for a related paper).
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In order to construct a genuinely multidimensional scheme the exact integral equations
are derived from a general theory of bicharacteristics for linear (or linearized) hyperbolic
systems. These are further approximated by an approximate evolution operator in such a
way that all of the infinitely many directions of propagation of bicharacteristics are explicitly
taken into account. In the finite volume framework the approximate evolution operator is
then used to evolve the solution along cell interfaces in order to compute fluxes on edges.
This step can be considered a predictor step. In a corrector step the finite volume update is
then made.

The finite volume evolution Galerkin methods are a genuine generalization of the original
idea of Godunov using an evolution operator for a system in more than one space dimension.
They combine the usually conflicting design objectives of using the conservation form
and following the characteristics, or bicharacteristics. Instead of solving one-dimensional
Riemann problems in normal directions to cell interfaces by some approximate Riemann
solvers, we compute fluxes in a more multidimensional manner. This is the novel feature
of our method.

This paper is organized as follows. In Section 2 approximate evolution operators for
the linearized Euler equations are derived. We follow the lines of our recent results [17]
for the linear wave equation system. The formulation of the second-order finite volume
evolution Galerkin scheme is given in Section 3. Second-order resolution is obtained with
a conservative bilinear recovery in space and the midpoint rule approximation in time.
In order to suppress oscillations of the solution at discontinuities several techniques of
limiting are discussed. We illustrate the use of the method for the nonlinear system of
Euler equations and present details concerning the linearization used. In Section 4 the error
analysis of the FVEG schemes is presented. First we study the linearization error which is
due to the approximation of a nonlinear hyperbolic system of first order by a linearized one.
Linearization is done by freezing the Jacobian matrices at a suitable state. Further, the global
numerical error for the case of linear or linearized systems is studied. We prove that the error
in space as well as in time is of second order. Numerical results, which confirm higher order
accuracy as well as good multidimensional resolution of the FVEG schemes, are shown
in Section 5. We present results for the so-called Sod 2D problem and two-dimensional
Riemann problems (see, e.g., [31]). Our numerical experiments demonstrate that the FVEG
methods satisfy the entropy condition also at sonic rarefaction waves and no entropy fix is
needed.

2. APPROXIMATE EVOLUTION OPERATORS: THE LINEARIZED

EULER EQUATIONS

The key ingredient in our genuinely multidimensional schemes are approximate evolution
operators that are derived from an integral equation. The integral equation is obtained
using integration along bicharacteristics of the system. From this integral equation one can
develope a number of approximate evolution operators.

The basic approach for general linear systems with constant coefficients and its appli-
cation to a 3 × 3 system for the two-dimensional wave equation were presented in [17].
Here we give details for the case of the 4 × 4 system of the linearized Euler equations with
frozen coefficients. It describes not only the propagation of acoustic waves, it also allows
advective terms as additional difficulty.
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2.1. The Linearized Euler Equations and Their Exact Integral Equation

In order to derive the integral equations for nonlinear hyperbolic systems a suitable
linearization and freezing of coefficients has to be imposed first. This is achieved by freezing
the Jacobian matrices at a suitable point. In this section we derive the integral equations for
such linearized systems. In Section 3.2 we will specify the linearization and in Section 4.1
we will analyze the error introduced by the linearization.

We will illustrate the whole procedure for the Euler equations of gas dynamics and start
with the system written in primitive variables,

v t + A1(v)v x + A2(v)v y = 0, x = (x, y)T ∈ R
2, (2.1)

where

v :=




�

u
v
p


, A1 :=




u � 0 0

0 u 0 1
�

0 0 u 0
0 � p 0 u


, A2 :=




v 0 � 0

0 v 0 0

0 0 v 1
�

0 0 � p v


.

This is the simplest and most convenient form for studying the bicharacteristics of the
system away from discontinuities, i.e., shocks and contacts. Here � denotes the density, u
and v are the components of velocities, p is the pressure, and � is the isentropic exponent.
We consider � = 1.4 for dry air. To derive the integral equations we linearize system (2.1)
by freezing the Jacobian matrices at a point P̃ = (x̃, ỹ, t̃). Denote by ṽ = (�̃ , ũ, ṽ, p̃) the
local variables at point P̃ and by ã the local speed of sound there; i.e. ã =

√
� p̃
�̃

. Thus, the
linearized system (2.1) with frozen constant coefficients has the form

v t + A1(ṽ)v x + A2(ṽ)v y = 0, x = (x, y)T ∈ R
2. (2.2)

The eigenvalues of the matrix pencil A(ṽ) = A1(ṽ)nx + A2(ṽ)ny , where n = n(�) =
(nx , ny)T = (cos �, sin �)T ∈ R

2, are

�1 = ũ cos � + ṽ sin � − ã,

�2 = �3 = ũ cos � + ṽ sin �,

�4 = ũ cos � + ṽ sin � + ã,

and the corresponding linearly independent right eigenvectors are

r1 =




− �̃
ã

cos �

sin �

−�̃ ã


, r2 =




1
0
0
0


, r3 =




0
sin �

−cos �

0


, r4 =




�̃
ã

cos �

sin �

�̃ ã


.

Let R(ṽ) be the matrix of the right eigenvectors. The inverse of R(ṽ) is

R−1(ṽ) = 1

2




0 cos � sin � −1/(2�̃ ã)

1 0 0 −1/ã2

0 sin � −cos � 0
0 cos � sin � 1/(2�̃ ã)


 .
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Multiplying system (2.2) by R−1(ṽ) from the left we obtain the characteristic system

w t + B1(ṽ)w x + B2(ṽ)w y = 0,

where

B1(ṽ) =




ũ − ã cos � 0 − 1
2 ã sin � 0

0 ũ 0 0
−ã sin � 0 ũ ã sin �

0 0 1
2 ã sin � ũ + ã cos �


,

B2(ṽ) =




ṽ − ã sin � 0 1
2 ã cos � 0

0 ṽ 0 0
ã cos � 0 ṽ −ã cos �

0 0 − 1
2 ã cos � ṽ + ã sin �




and the characteristic variables w are

w =




w1

w2

w3

w4


 = R−1(ṽ)v =




1
2

(− p
�̃ ã + u cos � + v sin �

)
� − p

ã2

u sin � − v cos �

− 1
2

( p
�̃ ã + u cos � + v sin �

)


. (2.3)

The quasidiagonalized system of the linearized Euler equations has the form

w t +




ũ − ã cos � 0 0 0
0 ũ 0 0
0 0 ũ 0
0 0 0 ũ + ã cos �


 w x +




ṽ − ã sin � 0 0 0
0 ṽ 0 0
0 0 ṽ 0
0 0 0 ṽ + ã sin �


w y = S,

(2.4)

with

S =




S1

S2

S3

S4


 =




1
2 ã

(
sin � ∂w3

∂x − cos � ∂w3
∂y

)
ã sin �

(
∂w1
∂x − ∂w4

∂x

) − ã cos �
(
∂w1
∂y − ∂w4

∂y

)
1
2 ã

(−sin � ∂w3
∂x + cos � ∂w3

∂y

)


 .

The same procedure had been carried out in [17] for a system form of the wave equation.
Actually, we can show that 3 × 3 system is contained in system (2.2) in the following
manner. Set �̃ = 1/ã and remove the first row corresponding to density, as well as the first
column from the Jacobian matrices A1, A2 in (2.2). Then, moving the third equation for
pressure into the first row leads to the so-called wave equation system with advection; i.e.,

ut + A1ux + A2uy = 0, x = (x, y)T ∈ R
2, (2.5)
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where u = (p, u, v)T and

A1 :=

 ũ ã 0

ã ũ 0
0 0 ũ


, A2 :=


 ṽ 0 ã

0 ṽ 0
ã 0 ṽ


.

Further, if the advection velocities are ũ = ṽ = 0 and ã = const, we get the well-known
linear wave equation system, which describes the propagation of acoustic waves. Note that
in [17] we did not consider any advection terms. But they are present in the linearized Euler
system. These terms lead to more complex configurations that have to be considered in the
implementation of our schemes.

The system (2.4) will reduce to a diagonal system, i.e., S = 0, only in the special case
when the Jacobian matrices A1, A2 commute, which is not the case for the two-dimensional
Euler equations.

In what follows we will work with the concept of bicharacteristics. The �th bicharacteristic
x� corresponding to the �th equation of the system (2.2) is defined by

dx�

dt
= b��(n(�)) := (

b1
��(n(�)), b2

��(n(�))
)T

, (2.6)

with B1 = (b1
jk)1 ≤ j,k ≤ 4, B2 = (b2

jk)1 ≤ j,k ≤ 4. The set of all bicharacteristics creates the so-
called Mach cone (see Fig. 1. We integrate the �th equation of system (2.2) from point
P = (x, y, t + 	t) down to point Q�(�), where the bicharacteristic hits the plane through
P ′ = (x − ũ	t, y − ṽ	t, t). More precisely, the footpoints of the corresponding bicharac-
teristics are

Q1(�) = (x − (ũ − ã cos �)	t, y − (ṽ − ã sin �)	t, t),

Q2 = Q3 = (x − ũ�t, y − ṽ	t, t),

Q4(�) = (x − (ũ + ã cos �)	t, y − (ṽ + ã sin �)	t, t).

Integration of system (2.4) along the bicharacteristics in time gives relations for the char-
acteristic’s variables. Now integrating with respect to �, i.e., over the unit circle, and

FIG. 1. Bicharacterestics along the Mach cone through P and Q�(�).
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multiplication from the left by the matrix R yield the exact integral equation

v(P) = 1

2�

∫ 2�

0




− �̃
ã w1 + w2 + �̃

ã w4

w1 cos � + w3 sin � + w4 cos �

w1 sin � − w3 cos � + w4 sin �

−�̃ ãw1 + �̃ ãw4


 d�

+ 1

2�

∫ 2�

0




− �̃
ã S′

1 + �̃
ã S′

4

S′
1 cos � + S′

3 sin � + S′
4 cos �

S′
1 sin � − S′

3 cos � + S′
4 sin �

−�̃ ãS′
1 + �̃ ãS′

4


 d�, (2.7)

where S′
� = ∫ t+�t

t S�(x�(t̃, �), t̃, �) dt̃ is the time integral along the �th bicharacteristic. In
order to avoid a common misconception note that (2.7) is an integral equation for v and not
an integral representation such as the Kirchhoff formula for the wave equation. Note that
we must distinguish here between the representation of solution, which is a time explicit
formula, and the integral equation for the solution, which is a time implicit formula.

Now we reformulate Eq. (2.7) to enable a numerical implementation. First, note that the
relation Q1(� + �) = Q4(�) holds. Therefore we have the following symmetries:

w1(Q1(� + �), � + �) = −w4(Q4(�), �),

w1(Q1(� + �), � + �) cos(� + �) = w4(Q4(�), �) cos(�),

w1(Q1(� + �), � + �) sin(� + �) = w4(Q4(�), �) sin(�).

Since all quantities w�(x, y, t, �) and Q�(�) are 2�-periodic with respect to �, it follows
for the integrals over the basis of the cone (see Fig. 1) that the equations

−
∫ 2�

0
w1(Q1(�), �) d� =

∫ 2�

0
w4(Q4(�), �) d�,

∫ 2�

0
w1(Q1(�), �) cos(�) d� =

∫ 2�

0
w4(Q4(�), �) cos(�) d�,

∫ 2�

0
w1(Q1(�), �) sin(�) d� =

∫ 2�

0
w4(Q4(�), �) sin(�) d�

hold. Similarly, we have for S′
� the relations

∫ 2�

0
S′

1(�) d� = −
∫ 2�

0
S′

4(�) d�,

∫ 2�

0
S′

1(�) cos(�) d� =
∫ 2�

0
S′

4(�) cos(�) d�, (2.8)

∫ 2�

0
S′

1(�) sin(�) d� =
∫ 2�

0
S′

4(�) sin(�) d�.

Because of the � independence of Q2 = Q3 the integrals containing w2(Q2(�), �) and
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w3(Q3(�), �) can be solved directly. For example, we have the following equalities:

∫ 2�

0
w3(Q3(�), �) sin(�) d� = �u(Q3) and

∫ 2�

0
w3(Q3(�), �) cos(�) d� = −�v(Q3).

Similarly to that in [17, 28] we obtain from (2.7) the following formulae for the exact solution
v of the linearized system at point P = (x, t + 	t). In order to use notation consistent with
our previous paper [17] we put Q := Q1(�) and P ′ := Q2. Then we have

� (x, t + �t) = � (P ′) − p(P ′)
ã2

+ 1

2�

∫ 2�

0

[
p(Q)

ã2
− �̃

ã
u(Q) cos � − �̃

ã
v(Q) sin �

]
d�

− �̃

ã

1

2�

∫ 2�

0

∫ t+�t

t
S(x − (ũ − cn(�))(t + �t − t̃), t̃, �) dt̃ d�, (2.9)

u(x, t + �t) = 1

2�

∫ 2�

0

[
− p(Q)

�̃ ã
cos � + u(Q) cos2 � + v(Q) sin � cos �

]
d�

+ 1

2�

∫ 2�

0

∫ t+�t

t
cos �S(x − (ũ − cn(�))(t + �t − t̃), t̃, �) dt̃ d�

+ 1

2
u(P ′) − 1

2�̃

∫ t+�t

t
px (P ′(t̃)) dt̃, (2.10)

v(x, t + �t) = 1

2�

∫ 2�

0

[
− p(Q)

�̃ ã
sin � + u(Q) cos � sin � + v(Q) sin2 �

]
d�

+ 1

2�

∫ 2�

0

∫ t+�t

t
sin �S(x − (ũ − cn(�))(t + �t − t̃), t̃, �) dt̃ d�

+ 1

2
v(P ′) − 1

2�̃

∫ t+�t

t
py(P ′(t̃)) dt̃, (2.11)

p(x, t + �t) = 1

2�

∫ 2�

0
[p(Q) − �̃ ãu(Q) cos � − �̃ ãv(Q) sin �] d�

− �̃ ã
1

2�

∫ 2�

0

∫ t+�t

t
S(x − (ũ − cn(�))(t + �t − t̃), t̃, �) dt̃ d�, (2.12)

where

(x − (ũ − ãn(�))(t + �t − t̃))

= (x − (ũ − ã cos �)(t + �t − t̃), y − (ṽ − ã sin �)(t + �t − t̃))

and where the so-called source term S is given by

S(x, t, �) := ã[ux (x, t, �) sin2 � − (uy(x, t, �) + vx (x, t, �))

× sin � cos � + vy(x, t, �) cos2 �]. (2.13)

Note that we have derived an exact integral equation for the solution to the linearized
Euler equations (2.2). This will be a basis for our further numerical approximations. The
time integrals of S are the terms needing most attention. In the next section we shall use
quadratures in time to construct approximate evolution operators.
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2.2. Approximate Evolution Operators

As in [17] the integrals of the source term with respect to time will be approximated by the
rectangle rule or by the trapezoidal rule. They lead to an O(	t) or O(	t2) approximation,
respectively. In both cases we would need to evaluate derivatives of the velocity components
at time t . However, in [17, Lemma 2.1] we found that the integrals of the source S can be
simplified through integration by parts, which yields

	t
∫ 2�

0
S(t, �) d� =

∫ 2�

0
[uQ cos � + vQ sin �] d�. (2.14)

Analogously, we can derive the formulae

	t
∫ 2�

0
S(t, �) sin � d� =

∫ 2�

0
[2uQ sin � cos � + vQ(2 sin2 � − 1)] d� (2.15)

and

	t
∫ 2�

0
S(t, �) cos � d� =

∫ 2�

0
[uQ(2 cos2 � − 1) + 2vQ sin � cos �] d�. (2.16)

Let us first apply the rectangle rule to the exact integral representation (2.9)–(2.12). As in
[17] the integrals in (2.10) and (2.11) involving px and py need to be replaced by integrals
over the cone mantle. This is done by using the Gauss theorem (see [17]). In this way we
have generated the approximate evolution operator, which we, analogously to that in [17],
call the EG3 operator.

Approximate evolution operator EG3.

� (P) = � (P ′) − p(P ′)
ã2

+ 1

2�

∫ 2�

0

[
p(Q)

ã2
− 2

�̃

ã
u(Q) cos � − 2

�̃

ã
v(Q) sin �

]
d�

+ O(	t2), (2.17)

u(P) = 1

2
u(P ′) + 1

2�

∫ 2�

0

[
− 2

�̃ ã
p(Q) cos � + u(Q)(3 cos2 � − 1) + 3v(Q) sin � cos �

]
d�

+ O(	t2), (2.18)

v(P) = 1

2
v(P ′) + 1

2�

∫ 2�

0

[
− 2

�̃ ã
p(Q) sin � + 3u(Q) sin � cos � + v(Q)(3 sin2 � − 1)

]
d�

+ O(	t2), (2.19)

p(P) = 1

2�

∫ 2�

0
[p(Q) − 2�̃ ãu(Q) cos � − 2�̃ ãv(Q) sin �] d� + O(	t2), (2.20)

where Q = (x − 	t(ũ − ã cos �), y − 	t(ṽ − ã sin �), t), P ′ = (x − 	t ũ, y − 	t ṽ, t), and
P = (x, y, t + 	t). This is the approximate evolution operator that gave us, for the wave
equation system, the best results in general. In [17] also the EG1 and the EG2 approximate
evolution operators were studied. For the sake of completeness we derive here the other
two approximate evolution operators for the Euler equations. Our numerical experiments
for the linear wave equation system [18] as well as for the nonlinear Euler equations show
that the second-order FVEG1 and FVEG3 schemes lead to comparable results, whereas the
FVEG2 scheme gives larger errors.

Now we reformulate the integral equations (2.10), (2.11) for u and v, respectively. Using
the second and third equation of the linearized system (2.2) we can replace terms involving
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integrals of px or py and u(P ′) or v(P ′) by means of u(P) or v(P), respectively. Thus we
have the following equivalent exact integral equations for u(P) and v(P), respectively:

u(x, t + �t) = 1

�

∫ 2�

0

[
− p(Q)

�̃ ã
cos � + u(Q) cos2 � + v(Q) sin � cos �

]
d�

+ 1

�

∫ 2�

0

∫ t+�t

t
cos �S(x − (ũ − cn(�))(t + �t − t̃), t̃, �) dt̃ d�,

v(x, t + �t) = 1

�

∫ 2�

0

[
− p(Q)

�̃ ã
sin � + u(Q) cos � sin � + v(Q) sin2 �

]
d�

+ 1

�

∫ 2�

0

∫ t+�t

t
sin �S(x − (ũ − cn(�))(t + �t − t̃), t̃, �) dt̃ d�. (2.21)

Now, applying the rectangle rule in order to approximate the source terms in (2.21) and
applying (2.15), (2.16) leads to the following approximate evolution formulae for the ve-
locity components. These are a part of the approximate evolution operator which we refer
to as the EG1. The approximate evolution formulae for � and p are the same as for the EG3
operator, i.e., (2.17), (2.20).

Approximate evolution operator EG1.

u(P) = 1

�

∫ 2�

0
− p(Q)

�̃ ã
cos � + u(Q)(3 cos2 � − 1) + 3v(Q) sin � cos � d� + O(	t2),

(2.22)

v(P) = 1

�

∫ 2�

0
− p(Q)

�̃ ã
sin � + 3u(Q) sin � cos � + v(Q)(3 sin2 � − 1) d� + O(	t2).

(2.23)

Finally, we apply the trapezoidal rule to approximate integrals of the source terms with
respect to time in the integral equations (2.9), (2.21), and (2.12). This leads to the following
approximations:

1

2�

∫ t+	t

t

∫ 2�

0
S(t̃, �) d� dt̃ = 1

2
	t

[
1

2�

∫ 2�

0
S(t + 	t, �) d� + 1

2�

∫ 2�

0
S(t, �) d�

]

+ O(	t3)

= 1

2
	t

[
1

2
ã(ux + vy)P + 1

2�

∫ 2�

0
S(t, �) d�

]
+ O(	t3),

(2.24)

1

�

∫ t+	t

t

∫ 2�

0
S(t̃, �) cos(�) d� dt̃ = 1

2
	t

[
1

�

∫ 2�

0
S(t + 	t, �) cos(�) d�

+ 1

�

∫ 2�

0
S(t, �) cos(�) d�

]
+ O(	t3)

= 	t
1

2�

∫ �

0
S(t, �) cos(�) d� + O(	t3). (2.25)
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Note that for the S cos � term the integral at the apex P of the Mach cone vanishes. An
analogous formula to (2.25) holds for S sin �.

However, now we have introduced in (2.24) the unknown derivatives ux and vy at the apex
P for which we want to solve. Following Butler’s ideas [4] we solved this problem for the
wave equation system in [17] and derived the so-called EG2 approximate evolution operator.
Here, we will analogously eliminate these derivatives via integration of the equations for �

and p along a bicharacteristic curve P ′ P . Thus, using the same trapezoidal rule to integrate
the first and the last equation of (2.2) from P ′ to P gives

� P − � P ′ + 1

2
	t �̃ [(ux + vy)P + (ux + vy)P ′ ] = O(	t3), (2.26)

pP − pP ′ + 1

2
	t �̃ ã2[(ux + vy)P + (ux + vy)P ′ ] = O(	t3), (2.27)

respectively. Using (2.26) or (2.27) we eliminate the derivatives at the apex P of the Mach
cone but still introduce the derivatives at point P ′. Now, similarly to that for the integrals
of px , py in the derivation of the EG3 operator, we apply the Gauss theorem to replace ux

and vy at point P ′ by terms over the cone mantle. More precisely, we obtain

�(c	t)2(ux + vy)P ′ =
∫

O
(ux + vy) dx dy + O(	t4) =

∮
[u dy − v dx] + O(	t4)

= c	t
∫ 2�

0
[uQ cos � + vQ sin �] d� + O(	t4). (2.28)

Combining the exact formulae (2.9), (2.21), (2.12) with the approximations (2.24), (2.25),
(2.26), (2.27), (2.28), as well as with (2.14), (2.15), (2.16), yields the approximate evolution
operator, which we, analogously to that in [17], call the EG2.

Approximate evolution operator EG2.

� (P) = � (P ′) − 2
p(P ′)

ã2
+ 1

�

∫ 2�

0

[
p(Q)

ã2
− �̃

ã
u(Q) cos � − �̃

ã
v(Q) sin �

]
d�, (2.29)

u(P) = 1

�

∫ �

0

[
− p(Q)

�̃ ã
cos � + u(Q)(2 cos2 � − 1/2) + 2v(Q) sin � cos �

]
d�, (2.30)

v(P) = 1

�

∫ 2�

0

[
− p(Q)

�̃ ã
sin � + 2u(Q) cos � sin � + v(Q)(2 sin2 � − 1/2)

]
d�, (2.31)

p(P) = −p(P ′) + 1

�

∫ 2�

0
[p(Q) − �̃ ãu(Q) cos � − �̃ ãv(Q) sin �] d�. (2.32)

3. FINITE VOLUME EVOLUTION GALERKIN SCHEMES

Our first attempt to use the multidimensional approximate evolution operators in numeri-
cal schemes led us to try the evolution Galerkin approach. There piecewise polynomial data
are evolved using approximate evolution operators of the kind derived in the previous sec-
tion. After each time step the solution is projected back onto the piecewise polynomials with
respect to the mesh. For piecewise constant functions, this had already turned out to involve
quite tedious calculations. It was barely feasible for practical applications. Even after some
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simplifications concerning the evaluation of the multiple integrals that appeared, we came to
the conclusion that in order to go to higher order, a different approach was to be taken. The
approximate evolution of nonconstant data is just too complicated. The decisive step that we
took was to go to the finite volume framework. We believe that the finite volume approach is
highly advantageous in practical applications because conservativity is automatically guar-
anteed and it is relatively easy to go to higher order via standard recovery procedures. In
finite volume methods the approximate evolutions are used to evaluate the numerical fluxes.
We give a short outline of the finite volume approach to fix notations and then introduce
the recovery procedures that we have considered for our schemes. Finally, we show how to
proceed for nonlinear systems by considering the Euler equations of gas dynamics.

Now we will describe finite volume evolution Galerkin (FVEG) schemes for a general
hyperbolic system in d space dimensions; i.e.,

ut +
d∑

k=1

( f k(u))xk = 0, x = (x1, . . . , xd )T ∈ R
d , (3.1)

where f k = f k(u), k = 1, . . . , d represent given physical flux functions and the conserva-
tive variables are u = (u1, . . . , um)T ∈ R

m . Denote by E(s) : X → X the exact evolution
operator associated with a time step s acting on some suitable function space X for system
(3.1); i.e.,

u(·, t + s) = E(s)u(·, t). (3.2)

Let 
 be our two-dimensional computational domain. We construct a mesh for 
, which
consists of the square mesh cells


i j ≡
[(

i − 1

2

)
h,

(
i + 1

2

)
h

]
×

[(
j − 1

2

)
h,

(
j + 1

2

)
h

]

= [
xi−1/2, xi+1/2

] × [
y j−1/2, y j+1/2

]
,

where i, j ∈ Z and h > 0 is the mesh size parameter.
We suppose that S p

h is a finite element space consisting of piecewise polynomials of
degree p ≥ 0. Let U n be an approximation in the space S p

h to the exact solution u(·, tn) at
a time tn > 0 and take E� : Sr

h → X to be a suitable approximation to the exact evolution
operator E(� ), r > 0. We denote by Rh : S p

h → Sr
h a recovery operator, r > p ≥ 0. For sim-

plicity we shall limit our considerations to cases of constant time step 	t , i.e., tn = n	t ,
and of a uniform mesh consisting of d-dimensional cubes with a uniform mesh size h.
However, generalization to nonuniform meshes can be made and it is only a question of
implementation. Morton [25] gave an error analysis of the finite volume evolution Galerkin
schemes for scalar conservation laws for arbitrary meshes.

DEFINITION 3.1. Starting from some initial value U 0 at time t = 0, the finite volume
evolution Galerkin method (FVEG) is recursively defined by means of

U n+1 = U n − 1

h

∫ 	t

0

d∑
k=1

�xk f k

(
U n+�/	t

)
d�, (3.3)

where the central difference v(x + h/2) − v(x − h/2) is denoted by �xv(x) and
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�xk f k(U n+�/	t ) represents an approximation to the edge flux difference at intermediate
time levels tn + �, � ∈]0, 	t[. The cell boundary flux f k(U n+�/	t ) is evolved using the
approximate evolution operator E� to tn + � and averaged along the cell boundary; for exa-
mple, on the right-hand vertical edge Ei+1/2 := {[xi+1/2, y], y ∈]( j − 1/2)h, ( j + 1

2 )h[} we
have

f k

(
U n+�/	t

) = 1

h

∫
Ei+1/2

f k(E� RhU n) d Sy . (3.4)

This is the new key step in our FVEG method. An analogous formula holds for the left-hand
side edge Ei−1/2, j as well as for horizontal edges Ei, j±1/2.

For the computation of fluxes on cell interfaces the value of U has to be determined by
means of an approximate evolution operator. We approximate the time integral in (3.3) by
the midpoint rule.

If no recovery is used the whole method is of first order. In this case the finite volume
evolution Galerkin scheme (3.3), (3.4) reads

U n+1 = U n − 	t

h

d∑
k=1

�xk f k(U ∗), (3.5)

f k(U ∗) = 1

h

∫
E

f k

(
E	t/2U n

)
dS, (3.6)

where the integration in (3.6) is done for every edge E of the corresponding control volume.
However, the most important advantage of the above finite volume formulation (3.3), (3.4)
is that even a first-order-accurate approximation E� to the evolution operator E(� ) yields
an overall second-order update from U n to U n+1 if the recovery operator is applied. The
second-order scheme is obtained by a conservative discontinuous bilinear recovery using
the vertex values. Thus the fluxes are computed using the intermediate solution on cell
interface:

f k(U ∗) = 1

h

∫
E

f k

(
E	t/2 RhU n

)
dS. (3.7)

3.1. Bilinear Recovery and Limiters

There are many possible recovery schemes on piecewise constant data, with respect to the
mesh, which could be used. One possibility, which we chose for our numerical computations,
is discontinuous bilinear recovery using finite difference approximation of derivatives. It is
taken to be conservative and given as

RhU |
i j =
(

1+ (x − xi )

h
	x 	2

y�x + (y − y j )

h
	2

x 	y�y + (x − xi )(y − y j )

h2
	x 	y�x�y

)
U i j ,

(3.8)

where 	xv(x) = 1
2 (v(x + h) + v(x − h)) and where an analogous notation is used for y-

direction. In order to avoid developing oscillations in the solution the gradients of this
bilinear recovery are multiplied by limiters. We have tested a minmod-type limiter (see
Barth and Jespersen [1]). Let U �, with � = 1, 2, . . . , m, denote any component of the
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vector U . For example, the limiter at an upper right vertex (i + 1/2, j + 1/2) is computed
for each component by

�� =




1, if Ũ � = U �
i j ,

min
(
1,

(
U �max − U �

i j

)/(
Ũ � − U �

i j

))
, if Ũ � > U �

i j ,

min
(
1,

(
U �min − U �

i j

)/(
Ũ � − U �

i j

))
, if Ũ � < U �

i j ,

(3.9)

where Ũ � = (RhU �)i+1/2, j+1/2 and U �min
, U �max

are local extrema at the vertex (i + 1/2,

j + 1/2) computed from U �
i+1, j+1, U �

i+1, j , U �
i, j+1, U �

i j . The limiting is done for each com-
ponent of the vector U separately. In the case of the Euler equations we work here with
the primitive variables vector; i.e., U = (� , u, v, p)T. As a result, a new limited form of
the piecewise bilinear recovery (3.8) is given, for example at the vertex (xi+1/2, y j+1/2), as
follows:

(RhU )L
i+1/2, j+1/2 = U i j + �

[(
1

2
	x 	2

y�x + 1

2
	2

x 	y�y + 1

4
	x 	y�x�y

)
U i j

]
. (3.10)

Another possibility, which we also tested experimentally, is to approximate the x-, y-,
and xy- slopes by means of recovery with the classical minmod slope limiter or the WENO
recovery. For example, the x- slope U x of RhU at the mesh cell 
i j is given as

U x := 1

h
�(U i+1, j − U i j , U i j − U i−1, j ). (3.11)

For the classical minmod recovery it holds that

��(a, b) = minmod(a, b) ≡ 1/2(sgn(a) + sgn(b))min(|a|, |b|), a, b ∈ R, (3.12)

for each component � = 1, 2, . . . , m of the operator �. For the WENO recovery,

��(a, b) = WENO(a, b) ≡ (
1a + 
2b)/(
1 + 
2), (3.13)

with 
1 = (E + a2)−2, 
2(E + b2)−2. As in [12] E is taken to be 10−6.
In our calculations in Section 5 we have used (3.12), but our numerical comparisons with

the other limiting techniques, (3.9) and (3.13), show only marginal differences.

3.2. Euler Equations

We have applied the above general definition very successfully to linear problems, e.g.,
the wave equation system. The applications to the linear Maxwell equations were recently
explored (see [24, 32]). In [18–20] we presented several results of numerical experiments
and showed that the above approach led to very accurate schemes under the comparable
computational cost of other commonly used schemes. For example, in comparison with the
Lax–Wendroff scheme (rotated-Richtmyer version), the second-order FVEG1 method is
seven times more accurate (see [19]). For linear problems the EG methods capture multidi-
mensional effects such as rotational symmetry, circular shocks, and preservation of vorticity
very well (see [17–19]). The aim of this paper is to apply finite volume evolution Galerkin
methods to nonlinear problems, particularly to the Euler equation systems.
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The finite volume formulation, which automatically implies the conservativity property,
works with the conservation form of the Euler equations; i.e.,

ut + f 1(u)x + f 2(u)y = 0, (3.14)

where the vector of conservative variables and the fluxes are

u :=




�

�u
�v

e


 , f 1(u) :=




�u

�u2 + p
�uv

(e + p)u


 , f 2(u) :=




�v

�uv

�v2 + p

(e + p)v


 .

Here, e stands for the total energy; i.e., e = p/(� − 1) + � (u2 + v2)/2. However, in
Section 2.1, in order to consider bicharacteristics and to derive approximate evolution
operators, it was easier to work equivalently with the system in primitive variables v =
(� , u, v, p). Thus, for the Euler equations we will work in (3.7) with the vector of primitive
variables v instead of the vector of conservative variables u. This latter is only used in the
finite volume form (3.5) to maintain conservativity at discontinuities. Note also that the
limiting procedures, which are described in the previous subsection, are applied to a vector
in primitive variables.

In order to compute fluxes on cell interfaces by means of the approximate evolution
operator, we need to evaluate integrals along the cell interface and around the Mach cone
(cf. (3.6), (3.7)). There are generally two ways to do this: integrals can be evaluated either
exactly or by means of a suitable numerical quadrature. We have tested each possibility
with respect to stability and accuracy from an experimental as well as theoretical point
of view.

Let us discuss the implementation aspect. In the case of the first- and second-order scheme
for the wave equation system without advection, as well as in the case of the first-order
scheme for the Euler equations, we have evaluated and implemented both integrals around
the Mach cone and along the cell interface exactly as well as numerically. However, for
configurations with slanted Mach cones, e.g., the Euler equations, exact evaluation of both
integrals leads to very lengthy and tedious computations, especially when higher order
polynomial approximations are used. In order to simplify the derivation and implementa-
tion of the second-order scheme for the Euler equations, we approximated cell interface
integrals using the Simpson rule and evaluated fluxes at vertices and midpoints. For our
forthcoming paper [22] we are studying several possible numerical quadratures for dis-
continuous functions. It is proved in [22] that the Simpson rule leads to a scheme which
is monotonic under some conditions. Moreover, it takes multidimensional effects from the
corners into account. On the other hand, the trapezoidal rule leads to nonmonotonic schemes
and oscillations in solutions. We will demonstrate this fact in our numerical experiments
in Section 5. Let us consider a natural CFL number, � = max(|u| + c, |v| + c)	t/h ≤ 1.
Then the midpoint rule approximation of cell interface integrals naturally does not take into
account corner effects, since the fluxes are evaluated at tn + 	t/2. Therefore this quadrature
rule is inappropriate for a multidimensional scheme.

For the Mach cone integral both evaluations, i.e., the trapezoidal rule approximation as
well as the exact computation, have been implemented. For a numerical integration we take
a trapezoidal rule, since it has constant weights, which is very suitable for the periodic
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functions appearing in the approximate evolution operators (see also [11] for more details
on numerical integration).

In order to construct local Mach cones we need to define the local velocities of the flow
(ũ, ṽ) as well as the local speed of sound ã. Note that for linear problems these functions are
given. This local flow information can be computed, for example, by an averaging process.
If the cell interface integral is computed exactly, the averaging is done over six cells adjacent
to the edge considered. Otherwise, if the Simpson rule is used, we average over four cells
adjacent to the vertex or over two cells adjacent to the midpoint, respectively.

In this case the linearization is done at time t̃ = tn . However, in order to construct higher
order schemes, we will show in Lemma 4.1 that the Jacobian matrices have to be frozen at
the half time t̃ = tn + 	t/2. For example, if the exact evaluation is used we have to predict,
for example for the right-hand edge Ei+1/2 := {[xi+1/2, y], y ∈]( j − 1/2)h, ( j + 1

2 )h[}, the
values

ũ := ũ

(
xi+1/2, y j , tn + 1

2
	t

)
,

ṽ := ṽ

(
xi+1/2, y j , tn + 1

2
	t

)
, (3.15)

ã := ã

(
xi+1/2, y j , tn + 1

2
	t

)

Now, being at time tn we have no information about the solution there. Therefore, a predictor
step is needed to compute the solution at tn + 	t/2. In our computations we have used the
Lax–Friedrichs method to compute this auxiliary information. This gives us the desired
local flow velocities, which are computed either at the midpoints of cell interfaces or at
the vertices, depending on the integral evaluation. We have also experimented with taking
the simple averages of adjacent states at time tn as predicted values in conjuction with
quadrature rules. This is less expensive and works as well. According to Corollary 4.2 we
can also compute local velocities ũ, ṽ, ã in the predictor step for the time t̃ = tn + 	t ,
which gives only a first-order linearization error in time.

4. ERROR ANALYSIS OF THE FVEG SCHEMES

The aim of this section is to analyze error estimates for the FVEG schemes. We will be
particulary interested to show error estimates for the second-order version of the FVEG
schemes (3.5), (3.7), but we also make remarks about the first-order error of the FVEG
method (3.5), (3.6). First, we consider the linearization error in time, which is made if a
fully nonlinear hyperbolic system is approximated by a linear variable coefficient system
by freezing the time variable in the coefficient matrices. In Section 4.2 we study the global
error in space and time. We show how, for a general nonlinear hyperbolic system, it de-
pends on the stability of the scheme as well as on the truncation error. In Section 4.3 we
study the truncation error. We restrict out analysis to the case of linear constant coefficient
hyperbolic systems. Note that we do not discuss here effects of the linearization in space.
Our analysis is presented under the assumption that the linearization is chosen in such a
way that the resulting numerical scheme is strongly stable (cf. (4.16)). The error analysis
for fully nonlinear hyperbolic systems remains an open problem. One additional difficulty
will be the occurrance of sonic points and consistency with the entropy inequality.
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4.1. The Linearization Error in Time

In this section our aim is to analyze the linearization error, which we make if we replace
nonlinear system (2.1) with the linearized system (2.2). Here, we will consider only the
error in time. The whole error of the numerical scheme, i.e., error in space and time, will
be discussed in Section 4.2.

Our next lemma shows that by freezing the Jacobian matrices at the half time step
t̃ = tn + 	t/2, we obtain a second-order-accurate linearization. For simplicity in notation
we denote the solution of the linearized system by w .

LEMMA 4.1. Let w be a solution to the linearized system

w t + Ã1w x + Ã2w y = 0,
(4.1)

w(tn) = v(tn),

where

Ãk(x) = Ãk(x, tn + 	t/2), k = 1, 2. (4.2)

Then the error of linearization is of second order; i.e.,

v(tn + 	t) − w(tn + 	t) = O(	t3). (4.3)

Proof. We expand the solutions v and w into Taylor series and compute their time
derivatives at t = tn:

v t = −A1(v)v x − A2(v)v y,

v t t = −∂t (A1(v))v x − A1(v)v xt − ∂t (A2(v))v y − A2(v)v yt ,

w t = −Ã1w x − Ã2w y = −Ã1v x − Ã2v y, (4.4)

w t t = −Ã1w xt − Ã2w yt

= −A1(v)w xt − A2(v)w yt + O(	t).

Subtracting the derivatives of v and w we have the relations

v t − w t = (Ã1 − A1(v))v x + (Ã2 − A2(v))v y

= 	t/2[∂t (A1(v))v x + ∂t (A2(v))v y] + O(	t2) (4.5)

and

v t t − w t t = −A1(v)∂x (v t − w t ) − A2(v)∂y(v t − w t ) − ∂t A1(v)v x − ∂t A2(v)v y + O(	t)

= −∂t (A1(v))v x − ∂t (A2(v))v y + O(	t). (4.6)

Plugging (4.5) and (4.6) into the Taylor expansion for v(tn + 	t) − w(tn + 	t) yields

v(tn + 	t) − w(tn + 	t) = 	t(v t − w t ) + 	t2/2(v t t − w t t ) + O(	t3)

= 	t2/2(∂t A1(v)v x + ∂t A2(v)v y)

−	t2/2(∂t A1(v)v x + ∂t A2(v)v y) + O(	t3)

= O(	t3).

It is easy to see from the proof above that the following corollary holds.
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COROLLARY 4.2. Let w be a solution to the linearized system (4.1), where the Jacobian
matrices are frozen either at time tn,

Ãk(x) = Ãk(x, tn), k = 1, 2, (4.7)

or at time tn + 	t,

Ãk(x) = Ãk(x, tn + 	t), k = 1, 2. (4.8)

Then the linearization error is of first order in time; i.e.,

v(tn + 	t) − w(tn + 	t) = O(	t2). (4.9)

Let us note that our Jacobian matrices now depend only on the space variables x. In practice,
similarly to that in the MOT-ICE scheme of Noelle [27], they are evaluated by a predictor
step at time tn + 	t/2 for the second-order scheme. For the first-order scheme we have two
possibilities for freezing time in order to linearize Jacobian matrices, which can be chosen
freely, depending only on what problem we solve.

4.2. The Global Error

We rewrite our FVEG method (3.5), (3.7) in more-compact form as

U n+1 = Nh RhU n, (4.10)

where Nh denotes the FVEG update. Suppose U is some smooth function that is approx-
imated by a piecewise constant step function with respect to the mesh, e.g., obtained by
projection or taking cell midpoint values. A conservative piecewise bilinear recovery Rh of
U over 
i j can be written in the form

RhU = U i j + (U x )i j (x − xi ) + (U y)i j (y − y j ) + (U xy)i j (x − xi )(y − y j ), (4.11)

where the slopes (U x )i j , (U y)i j , (U xy)i j are, for example, second-order central difference
approximations, as in (3.8).

Another choice (see also Noelle [27]) is to take some solution adaptive approximation of
the exact derivatives, s.t. We have, for example, for an x- slope

(U x )i j = ux (xi , y j ) + (ûx )i j h + O(h2), (4.12)

where (ûx )i j is some discretely Lipshitz-continuous grid function. This means that there
exists a constant L > 0 such that for any i, j ∈ Z,

|(ûx )i j − (ûx )i+1 j | ≤ Lh.

A similar relationship holds for the y direction. It was shown in [12] that, for example, the
central version of the WENO recovery (3.13) satisfies the above condition (4.12).
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Let Q be the L2-projection given by integral averages onto a space S0
h of piecewise

constant step functions,

Qu =
∑
i, j∈Z

(
1

h2

∫

i j

u(x, y) dx dy

)
�i j , u ∈ (L2(R2))m, (4.13)

where �i j is the characteristic function for the square mesh cell 
i j . Denote by ‖ · ‖ the
L2-norm. The global error between the exact solution u and the approximate solution U is
then defined as

en+1 := u(·, tn+1) − RhU n+1.

The error can be decomposed into a recovered projection error � and an evolutionary error �:

en+1 = (u(tn+1) − Rh Qu(tn+1)) + (Rh Qu(tn+1) − RhU n+1) ≡ �n+1 + �n+1. (4.14)

It is clear (see also [17]) that the projection error onto piecewise bilinear functions is of
second order; i.e., ‖�n+1‖ ≤ ch2. Now we derive an evolution equation for � by introducing
the term RhNh Rh Qu as follows:

�n+1 = Rh(Qu(tn+1) −Nh Rh Qu(tn)) + (RhNh Rh Qu(tn) − RhNh RhU n). (4.15)

Note that the operator Nh consists of three steps: linearization on each cell interface;
evolution of the solution to the linearized, constant coefficient, hyperbolic system on each
cell interface; and the finite volume update. We studied in [17, 22] stability of Nh if applied
to a constant coefficient system. Here, we assume that the linearization is chosen in such a
way that the stability of the resulting scheme is preserved. Thus, we assume that the operator
RhNh is strongly stable in a suitable norm, e.g., such as possibly the L2-norm

‖RhNh‖ ≤ 1 (4.16)

(see Remark 4.3). Then the last term is bounded by ‖�n‖, so the evolutionary error �n+1 is
in fact determined only by the recovered truncation error,

Tn := 1

	t
[Qu(tn+1) − Nh Rh Qu(tn)], (4.17)

through the recurrence relation ‖�n+1‖ ≤ ‖�n‖ + 	t‖Rh Tn‖. This yields

‖�n+1‖ ≤ ‖�0‖ + 	t
n∑

j=0

‖Rh T j‖.

Since the initial approximation is taken by

U 0 := 1

h2

∫

i j

u(x, y, 0) dx dy,

we get �0 = 0, and it remains to prove the order of the truncation error.
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Remark 4.3. Note that condition (4.16) is still an open problem for multidimensional
nonlinear systems. It is only expected to hold under some CFL stability condition on 	t/h.
Such a result has been established for some constant coefficient systems. It remains to be
seen whether such a condition can be established for our operator Nh , which includes a
linearization, in the future.

In our previous paper [17], we proved that for the wave equation system the EG1, EG2,
and EG3 approximate operators are stable if � ≡ c	t/h ≤ CFL < 1, for some CFL ∈]0, 1[.
In [20] precise CFL numbers for several EG schemes are computed experimentally. For
example, the first-order EG1, EG2, and EG3 schemes are stable up to CFL numbers
0.78, 0.53, and 0.59, respectively. In our forthcoming paper [22], we study the stability
question more closely and derive a new approximate EG operator which yields a FVEG
scheme stable up to a natural stability limit CFL = 1. The whole derivation and theoret-
ical as well as numerical justification is rather involved and is beyond the framework of
the present paper. But results presented here will naturally apply also to this new EG
operator.

4.3. Truncation Error Analysis

The aim of this subsection is to show the second-order truncation error estimates for
the FVEG scheme applied to a constant coefficient linear hyperbolic system in two space
dimensions. We have particularly in mind the linearized Euler equation system (2.2) and the
wave equation system (2.5) with or without advection, i.e., systems with constant Jacobians.
However, the general framework of the proof, except the part with the evolution operator,
i.e., Lemma 4.5, which depends on the system under consideration, is the same for any
linear, constant coefficient, hyperbolic system.

THEOREM 4.4. Let v be a smooth solution of the two-dimensional linearized, constant
coefficient, Euler equation system (2.2), or of the wave equation system (2.5) (with or
without advection). The truncation error Tn of the FVEG scheme (3.5), (3.7) is of second
order; i.e., for 	t/h = � fixed,

‖Tn‖ = O(h2).

Proof. We evaluate and compare both terms of Tn in (4.17). For any x ∈ 
i j , i, j ∈ Z,
we have by Taylor expansion in time that

v(x, tn+1) = v(x, tn) + 	tv t (x, tn) + 	t2

2
v t t (x, tn) + O(	t3). (4.18)

Further, put

vn
i j := Qv(·, tn)|
i j = 1

h2

∫

i j

v(x) dx.

Then integrating (4.18) over 
i j , using (2.2) or an analogous formulation for the wave
equation system, and the Gauss theorem yield
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Qv(·, tn+1)|
i j = vn+1
i j

= vn
i j − 	t

h2

∫
∂
i j

(A1nx + A2ny)vn − 	t2

2h2

∫
∂
i j

∂t ((A1nx + A2ny)vn) + O(	t3)

= vn
i j − 	t

h

[
A1(v)n

i+1/2, j − A1(v)n
i−1/2, j

] − 	t

h

[
A2(v)n

i, j+1/2 − A2(v)n
i, j−1/2

]

− 	t2

2h

[
A1∂t (v)n

i+1/2, j − A1∂t (v)n
i−1/2, j

]

− 	t2

2h

[
A2∂t (v)n

i, j+1/2 − A2∂t (v)n
i, j−1/2

] + O(h3 + 	t3), (4.19)

where Ak are the constant Jacobians of the fluxes f k(v) = Akv, k = 1, 2, and n = (nx , ny)
is the outer normal vector to ∂
i j .

Now, applying Nh Rh to the exact solution Qvn we get

Nh Rh Qvn = vn
i j − 	t

h

2∑
k=1

�xk f k(v∗), (4.20)

where v∗ is computed on the cell interfaces of 
i j by means of any approximate evolution
operator EG1, EG2, or EG3, denoted now by E	t/2. Thus, we have, for example, on the
right-hand edge Ei+1/2

v∗
i+1/2 = 1

h

∫
Ei+1/2

E	t/2 Rh Qvn dS, (4.21)

Analogously it holds for the edge Ei−1/2 and for the horizontal edges E j±1/2.
In order to show the second-order estimates of the truncation error it is sufficient to prove

that

f 1

(
v∗

i+1/2

) − f 1

(
v∗

i−1/2

) = [
A1(v)n

i+1/2, j − A1(v)n
i−1/2, j

]

+ 	t

2

[
A1∂t (v)n

i+1/2, j − A1∂t (v)n
i−1/2, j

] + O(h3), (4.22)

together with the analogous equation for the horizontal fluxes.
But we have for each approximate evolution operator, i.e., the EG1, EG2, and EG3, the

following Lemma. The proof will be postponed until later.

LEMMA 4.5. Let Rh be a bilinear recovery such that slopes are approximated with an
error O(h2), e.g., by central differences (cf. (4.11)). Let E	t/2 be one of the evolution
operators EG1, EG2, or EG3, derived in Section 2.2. Then the error between the exact
solution vn+1/2

i±1/2, j at the midpoints of cell interfaces Ei±1/2 and the approximation v∗
i±1/2,

obtained by the evolution Galerkin step (4.21), is of second order. More precisely, we have
for the vertical cell interfaces

v∗
i±1/2 − (v)n+1/2

i±1/2, j = h2gi±1/2 + O(h3), (4.23)

where the vector functions gi±1/2 are discretely Lipschitz-continuous grid functions. An
analogous error estimate holds for the horizontal cell interfaces.
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Now we can rewrite the L.H.S. of (4.22) equivalently in the following way:

f 1

(
v∗

i+1/2

) − f 1

(
v∗

i−1/2

) = A1(v∗)i+1/2 − A1(v∗)i−1/2

= A1(v)n+1/2
i+1/2, j − A1(v)n+1/2

i−1/2, j + O(h3)

= A1

(
v + 	t

2
∂t v + 	t2

8
∂2

t v
)n

i+1/2, j

− A1

(
v + 	t

2
∂t v + 	t2

8
∂2

t v
)n

i−1/2, j

+O(h3 + 	t3). (4.24)

Subtracting (4.24) from the R.H.S. of (4.22) we get a rest term rn
i j , s.t.,

rn
i j := 	t2/8A1

((
∂2

t v
)n

i+1/2, j
− (

∂2
t v

)n

i−1/2, j

) + O(h3 + 	t3). (4.25)

However, the second derivatives of v in r i j are discretely Lipschitz-continuous grid func-
tions g, and thus it holds that gi+1/2 − gi−1/2 = O(h). This implies that

rn
i j = O(h3). (4.26)

Combining (4.25), (4.26) with (4.22), (4.24) yields

‖Tn‖ = O(h2),

which concludes the proof.

Remark 4.6. The same results can be shown also for the case of a bilinear recovery Rh ;
s.t. (4.12) holds, e.g., the central version of WENO recovery. The first-order terms (v̂ x )i j h
in (4.12) are Lipschitz-continuous grid functions, and therefore they lead to the same order
of error as the central differences, if the fluxes on cell interfaces are subtracted in (4.24).

Remark 4.7. Note that the proof above can be extended formally also to nonlinear
systems with Jacobians Ak frozen at time t̃ = tn + 	t/2; i.e., Ak(x, y) = Ak(u(x, y, t̃)).
One interesting example of this situation would be linearized, constant coefficient, system
(2.2) rewritten in the conservative variables u. As a result we get a system in conservative
variables with nonconstant Jacobians. The proof above, more precisely the part concerning
the finite volume update, can be easily extended to this case. We would need to assume again
that the exact solution is smooth enough; i.e., for some final time T > 0, u ∈ C2(]0, T [),
with spatially Lipschitz-continuous ut t . Moreover, we need to suppose that the conservative
fluxes f k(u) ∈ C2, k = 1, 2, with Lipschitz-continuous second derivative. Note that only
smooth solutions locally in time are considered, i.e., before shocks evolve. Now we proceed
to prove Lemma 4.5.

Proof (Lemma 4.5). Consider the linear hyperbolic system of Euler equations (2.2) or
the wave equation system (2.5). Thus, the Jacobian matrices Ak, k = 1, 2, are constant.
Denote by Id the identity matrix and by Dk the diagonal part of Ak . For example, in the
case of the Euler equations (2.2) or of the wave equation system with advection (2.5), Dk is
the advective part and we have D1 = ũ Id, D2 = ũ Id. Let Mk := Ak − Dk, k = 1, 2, and
denote by L the linear operator M1∂x + M2∂y . Then the linear hyperbolic systems, which
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we consider, can be written in the following form:

v t + D1v x + D2v y ≡ v t + ũv x + ṽv y = −Lv . (4.27)

Define a directional derivative  by

d

d
:= ∂

∂t
+ ũ

∂

∂x
+ ṽ

∂

∂y
. (4.28)

Now, we apply the Taylor expansion with respect to  at the midpoint of Ei+1/2 and use
(4.27) to obtain

vn+1/2
i+1/2, j = v P ′ − 	t

2
Lv P ′ + 	t2

8
L2v P ′ + O(	t3), (4.29)

where P ′ = (xi+1/2 − ũ	t/2, y j − ṽ	t/2, tn).
On the other hand, we have from the evolution Galerkin step (4.21)

v∗
i+1/2 = v P ′ − 	t

2
Lhv P ′ + 	t2 Mhv P ′ , (4.30)

where Lh, Mh are finite difference operators defined by the corresponding EG operator.
After some calculations, for each EG operator the properties

Lh = L + O(h2), Mh = � L2 + O(h2), (4.31)

where � ∈ R
m , can be shown. Here m is the number of equations of the hyperbolic system.

Subtracting (4.30) from (4.29) and using (4.31) leads to (4.23) for the edge Ei+1/2.
Let us illustrate the situation more precisely for the wave equation system, without

advection, and consider only the 1D data case for simplicity of derivation. Then we have
for the first component of the exact solution (�, u)

�n+1/2 = �n − c	t

2
un

x + c2	t2

8
�n

xx + O(	t3). (4.32)

Assume that the both Mach cone and cell interface integrals are computed exactly for dis-
continuous bilinear approximate functions given by (3.8). The EG3 approximate evolution
operator (4.21) gives the following equation for the first component � of the cell interface
intermediate state (see also [19], where stencil coefficients are written explicitly):

�∗ =
[

1 +
(

�

2�
− 1

4

)
�2

x

]
	x�n −

[
�

2
+

(
�

8
− 1

2�

)
�2

x

]
�x un

= �n − c	t

2
un

x +
(

1

4
+ �

2�

)
h2�n

xx −
(

�

24
+ 1

2�

)
h3un

xxx + O(h4). (4.33)

We remind readers that � = c	t/h defines a CFL number for the wave equation system.
Thus, subtracting (4.32) from (4.33) gives

�∗ − �n+1/2 = �h2�n
xx + O(h3),
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with � = (�/2� + 1/4 − �2/8). An analogous property can be shown for the edge Ei−1/2

and for the second variable u, as well as for the complete two-dimensional situation. Any
second-order term consists of the second-order derivatives, which are Lipschitz-continuous
grid functions. This concludes the proof.

COROLLARY 4.8. The truncation error Tn of the FVEG scheme (3.5), (3.6) is of first
order; i.e., for 	t/h = � fixed,

‖Tn‖ = O(h).

Proof. The crucial point is to show that if no recovery is used, we have for the evolution
Galerkin step the first-order-error estimates

v∗
i+1/2 − (v)n+1

i+1/2, j = hgi+1/2 + O(h2), (4.34)

where the vector functions gi+1/2 are discretely Lipschitz-continuous grid functions. This
can be varified, after some computation, for each of the EG operators in away analogous
to that in Lemma 4.5. For example, for the 1D data case of the wave equation system, we
have for the first component �∗

�∗ = 	x�n − 2

�
�x un

= �n − 2

�
hun

x + h2

2
�n

xx − 2

3�
h3un

xxx + O(h4). (4.35)

Again, subtracting the equation for the exact solution (4.32) from (4.35) gives

�∗ − �n+1/2 = �hun
x + O(h2),

with � = (�/2 − 2/�), which concludes the proof.

5. NUMERICAL EXPERIMENTS

In this section, through numerical experiments, we illustrate the performance of the
proposed methods and compare it with other schemes. The computational domain was
taken to be a square [−1, 1] × [−1, 1]. The experiments were done on rectangular meshes
with the FVEG3 scheme (cf. (2.17)–(2.20)) for the second-order method the minmod slope
limiter (3.12) was used. We set the CFL number � = max(|u| + c, |v| + c)	t/h to 0.55.

The first example is a two-dimensional Sod problem with the initial data

� = 1, u = 0, v = 0, p = 1, ‖x‖ < 0.4;

� = 0.125, u = 0, v = 0, p = 0.1, else.

Since the mesh is quadrilateral, the initial data are implemented by cutting the initial discon-
tinuity and assigning it by modified area-weighted values according to the corresponding
cell. Figure 2 shows the isolines of density, the x- and y- velocity components, and the pres-
sure computed at time T = 0.2 by the second-order FVEG3 scheme. The solution exhibits
a circular shock traveling away from the center, a circular contact discontinuity traveling
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FIG. 2. Cylindrical explosion. Isolines of the solution obtained by the FVEG3 scheme with the Simpson rule
at T = 0.2 on a 400 × 400 mesh.

in the same direction, and a circular rarefaction wave traveling toward the origin at (0, 0).
The cell interface integrals of fluxes are approximated with the Simpson rule. This result
illustrates good multidimensional resolution and preservation of rotational symmetry of nu-
merical solution. In Fig. 3 we show isolines of the solution computed by the second-order
FVEG3 method, which uses the trapezoidal rule for the approximation of cell interface
integrals. As we mentioned in Section 3.2, this quadrature yields a FV scheme which is not
monotonic and has oscillations in the solution (see also [22] for more details).

In order to get more information on the exact solution, we solved on a very fine mesh
the one-dimensional nonhomogeneous cylindrically symmetric Euler equations using the
second-order finite volume method of Roe with the minmod slope limiter; i.e.,

U t + F(U )r = T(U ), (5.1)

with

U :=

 �

� û
e


, F(U ) :=


 � û

� û2 + p
(e + p)û


, T(U ) := −1

r


 � û

� û2

(e + p)û


.

Here, r is the radial direction and û is the radial velocity. Figure 4 shows the comparison
between the “exact” solution obtained by the one-dimensional FVM and the numerical
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FIG. 3. Same as Fig. 2, but using the trapezoidal instead of Simpson’s rule.

FIG. 4. Comparison between the one-dimensional cylindrically symmetric solution and the first- and second-
order FVEG methods.
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solution obtained by the first- as well as the second-order FVEG3 methods at the y = 0
cross section. In the first-order method, integrals along cell interfaces are evaluated exactly.
For the second-order method the Simpson rule approximation was used. The Mach cone
integrals from 0 to 2� appearing in the approximate evolution operator are evaluated exactly.
We can notice that the second-order method resolves discontinuities more sharply and
approximates the maxima of the solution more accurately. Note that we do not need any
artificial entropy fix in order to resolve correctly the sonic rarefaction wave. This is done
automatically by the method.

The second example is a two-dimensional Riemann problem. The computational domain
[−1, 1] × [−1, 1] is divided into four quadrants. The initial data consist of single constant
states in each of the four quadrants. These constants are chosen so that each pair of quad-
rants define a one-dimensional Riemann problem producing a single wave, which could be
a shock, rarefaction, or slip contact discontinuity. The aim is to study interactions of these
elementary waves. This problem was studied by Schulz-Rinne et al. [31] for several initial
configurations. Afterward, many authors compared the performance of their multidimen-
sional solvers on this “benchmark” problem (see, e.g., Brio et al. [3], Fey [9], LeVeque
[13], Liska and Wendroff [16]).

First let us consider the following initial data:

� = 0.5313, u = 0.0, v = 0.0, p = 0.4, if x > 0, y > 0;
� = 1.0, u = 0.0, v = 0.7276, p = 1.0, if x > 0, y < 0;
� = 1.0, u = 0.7276, v = 0.0, p = 1.0, if x < 0, y > 0;
� = 0.8, u = 0.0, v = 0.0, p = 1.0, if x < 0, y < 0.

For this configuration two forward-moving shocks and two standing slip lines are produced.
The solution contains a Mach reflection shown in Fig. 5 for density isolines. It was reported
by Fey in [8] that classical directional splitting FV schemes, e.g., the Van Leer flux vector
splitting method, may produce a curved shock connected with two other shocks, resembling

FIG. 5. Riemann problem with two shocks/two slip lines. Isolines of the density obtained by the (left) first-
and (right) second-order FVEG3 schemes at T = 0.52 on a 400 × 400 mesh.
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regular shock reflection. Fey’s method of transport [8] resolves the solution correctly as a
Mach reflection. Figure 5 demonstrates that the second-order FVEG3 method resolves
the multidimensional features in the x = y direction correctly. For a comparison we have
plotted also the solution obtained by the first-order FVEG3 method. Notice that due to the
numerical dissipation the Mach reflection is smoothed.

The third example is a two-dimensional Riemann problem that produces two forward-
moving shocks and two backward-moving shocks. The initial data is given by

� = 1.1, u = 0.0, v = 0.0, p = 1.1, if x > 0, y > 0;
� = 0.5065, u = 0.0, v = 0.8939, p = 0.35, if x > 0, y < 0;
� = 0.5065, u = 0.8939, v = 0.0, p = 0.35, if x < 0, y > 0;
� = 1.1, u = 0.8939, v = 0.8939, p = 1.1, if x < 0, y < 0.

In Fig. 6 isolines of solution obtained by the second-order FVEG3 method are plotted.
The Mach reflection in x = −y is well resolved (see isolines of density and velocity com-
ponents). Computational costs of the FVEG3 schemes are in general comparable with
other well-known first- and second-order FV methods. In [32] implementations of different
boundary conditions for the FVEG schemes are studied.

FIG. 6. Riemann problem with four shocks. Isolines of the solution obtained by the second-order FVEG3
scheme at T = 0.25 on a 400 × 400 mesh.
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6. CONCLUSION

In this paper we have derived new FVEG schemes for nonlinear Euler equations of gas
dynamics. The methods consist of two steps and couple a finite volume formulation with the
approximate evolution Galerkin operator. The latter is constructed using the bicharacteristics
of the multidimensional hyperbolic system such that all of the infinitely many directions of
wave propagation are taken into account. In Section 2.2 we have derived three approximate
EG operators for the Euler equations. In the first step of the FVEG method the solution at
cell interfaces is evolved by the approximate evolution operator and fluxes along edges are
calculated. In the second step the finite volume update is done. The second-order FVEG
scheme works with a conservative piecewise bilinear recovery in space and the midpoint
rule approximation of the time integral. We analyze the linearization error in time and
derive the estimates for the global error in time as well as in space under the assumption
that the linearization in space preserves stability of the numerical scheme. Further, the
truncation error is analyzed for the linear wave equation system and the linearized, constant
coefficient, Euler equations. It is shown that the error of the FVEG scheme (3.5), (3.7)
applied to the wave equation system or linear, constant coefficient, Euler equations is of
second order. Numerical experiments confirm good multidimensional behavior and higher
order resolution for the second-order FVEG methods.

In this paper we have described the FVEG schemes using regular square mesh cells.
Generalization to arbitrary meshes is only a matter of the implementation and will be done
in future. In our forthcoming paper [22] we will study the question of stability more closely
and derive a new EG operator which yields for the FVEG method the CFL limit 1.
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